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Abstract 
This report summarizes studies of long-range collisions and their compensation by current-
carrying wires for the Tevatron Run-II, which were performed during a two-week stay at 
Fermilab, February 22 to March 8, 2004. The weak-strong code WSDIFF was significantly 
extended to simulate the actual long-range encounters at the Tevatron for different antiproton 
bunches in the train at injection and in collision. Tune footprints and diffusive apertures simulated 
by this code are presented for various cases, differing in the bunch position, the energy, the 
number of long-range and head-on collisions, the presence of additional compensating wires and 
the momentum deviation. It is confirmed that the solution of 4 wires for injection, previously 
found by B. Erdelyi, raises the dynamic aperture, by about 1.0-1.5σ. For both injection and 
collision an ideal compensation of the 6 or 3 closest long-range encounters was modeled, by 
removing these collisions altogether. At collision, an improvement in the dynamic aperture of the 
order of 0.5-1.0σ is found. The much more copious residual long-range collisions are shown to 
also strongly affect the diffusive aperture, however, which highlights a lack of correlation 
between dynamic aperture and tune footprints. The dynamic aperture widely varies with the 
bunch number, ranging from 5 to 8σ along the train, in collision for on-momentum particles. 
Analytical calculations of tune shift, coupling, chromaticity and chromatic coupling similarly 
reveal a large variation from bunch to bunch, amounting to 16 units in chromaticity and 4 or 5 
units in chromatic coupling. Achieving compensation for all bunches in the train appears a non-
trivial challenge for dc wires, in particular if off-energy is also to be corrected.  
In a machine study on March 1, the Tevatron electron lens was used to simulate a wire and the 
dependences of beam lifetime, tune, emittances and bunch length on the beam-TEL distance were 
explored. The results of this experiment are reported elsewhere [1].  

Overview 
For a recent general review of beam-beam effects at the Tevatron Run-II see Ref. [2].   
Here we simulate the dynamic aperture due to long-range collisions at injection for bunch 
A1 and in collisions for bunches A1, A6 and A12. We in particular explore how much the 
dynamic aperture improves, if the closest encounters are removed or, if, at injection, 4 
wires are added with positions and settings as previously computed by B. Erdelyi. We 
compute tune footprints for all cases under study. In the attempt to identify a few “most 
harmful collisions”, we also map the LR encounters into the phase space at one location, 
and we investigate how tune shift, chromaticity, coupling and chromatic coupling due to 
long-range collisions build up around the ring. An analytical estimate of diffusion 
coefficients is described. Unfortunately we could not yet solve the related integrals for 
the 4-D case explicitly. The effects of momentum deviation, chromaticity and dispersive 
orbits at the long-range collisions are studied with an expanded version of WSDIFF [3]. 
We first discuss results at injection energy and then for collision. This is followed by a 
concluding summary. In the appendix we compile some analytical formulae. 



 

Injection 
We start by considering the situation at injection. Linear transfer matrices between all 72 
collision points and also the rf cavity were provided by T. Sen, as were the proton beam 
sizes and the beam-beam separation in the two planes. Other proton beam parameters are 
listed in Table 1. 
 
Table 1: Basic proton-beam parameters at injection 
Parameter Value 
proton bunch intensity 2.7e11 
95% emittance  20pi 
tunes  20.582, 20.5704 
circumference 6283.187 m 
Energy 150 GeV 
 
The beta functions at the starting point (1st parasitic collision) are 19.76 m and 19.52 m. 
The 1st parasitic (at injection, "cog 0" i.e before any cogging has occurred) for pbar 
bunch 1 is  5.646 m downstream of B0 in the pbar  direction (bunch 1 stays longest at 
injection and suffers most from beam-beam). The separations that Tanaji Sen sent are the 
beam separations with respect to the protons. The total 1-turn matrix from the 1st parasitic 
encounter around the ring, without beam-beam effects, is 

n
n

y

y

x

x

y

y

x

x









































−
−

−
−

=



















+ δ
’

’

63.34282.2249.000

188.0355.8475.000

11.5500525.2306.0

350.000738.9785.0

’

’

1

. 

The two pictures in Fig.1 show the image of all LRBB collisions mapped into the 
normalized  phase space at the 1st parasitic collision point. The helical structure is clearly 
visible, appearing as a single circle in the horizontal projection and as a ‘double-helix’ in 
the vertical. We can also plot the normalized transverse distances to the origin for the two 
planes, as is illustrated in Figure 2. There are 6 encounters for which the normalized 
distance is less than 7σ. They are compiled in Table 2. 
 
Table 2: LR encounters closest to the origin for bunch A1 at injection. 
LR encounter no. Normalized total distance [σ] 
13 6.83 
46 6.36 
48 6.13 
61 5.51 
69 6.55 
71 6.70 
 
 



  

 
Figure 1: Image of all LRBB collisions mapped into the horizontal (left) and vertical 
(right) normalized phase space at the 1st parasitic collision point for bunch A1 at 
injection. The axes are in units of the rms beam size and rms divergence. 

 

 
Figure 2: The normalized distances of the opposing beam to the origin in phase space in 
the horizontal and vertical plane as a function of LR encounter no. (top left and right), 
and against each other (bottom left), and the total distance to the origin, 22

yxtot AAA += , for 

each collision point (bottom right), considering bunch A1 at injection.   
 
 
 
 
 



 
 
 
 
For simulations we use an extension of the tracking program WSDIFF described in [3]. 
Figure 3 displays phase space plots for the two transverse planes as well as particle 
amplitudes as a function of time, for 15 trajectories with random initial conditions in the 
presence of all long-range encounters for bunch A1 at injection. The phase space looks 
diffuse, due to the strong coupling caused by the off-plane long-range collisions, but over 
this short time scale there is no noticeable growth in amplitude. The unpopulated ‘rings’ 
simply reflect the choice of initial conditions and have no deeper meaning. 
 

 

 
Figure 3: The normalized horizontal and vertical phase space (top row) and the 
normalized horizontal and vertical coordinates as a function of turn number (bottom row) 
for 15 trajectories with random start amplitudes between 0 and 10σ over 500 turns. 
 
Figure 4 shows tune footprints computed with all and only a part of the long-range 
collisions. Some particles appear locked to the linear coupling resonance (which can be 
interpreted as an artifact of our peak finding algorithm for the FFT spectrum). The 
footprint does not noticeably change, if the 6 closest encounters are excluded (top right 
vs. top left picture). Comparison of the tune footprint from WSDIFF with that computed 
by T. Sen’s code BBSIM yields a satisfactory agreement (bottom picture). 
 



 
 

 
Figure 4: Tune footprint for start amplitudes up to 6σ in each plane with all LR 
encounters present (top left) and without the 6 closest (top right); comparison of the bare 
tune footprints wit hall long-range collisions computed by CERN code WSDIFF and by 
Tanaji Sen’s code BBSIM (bottom).  
 
We determine the strength of action diffusion as a function of start amplitude by 
launching groups of 100 or 169 particles with identical initial linear action values and 
random betatron phase and computing the growth in average action variance with time 
(the averaging is applied over 1000 turns to suppress short-time fluctuations caused by 
phase-space distortions). Figures 5 and 6 compare the result when all LR collisions are 
included with that obtained if the closest (most harmful?) encounters are removed, thus 
modeling their perfect compensation. The dynamic aperture with all long-range collisions 
is about 6σ in the horizontal diffusion and 4.5-5.0σ vertically. This would suggest that 
particles are lost preferentially in the vertical direction. The dynamic aperture is nearly 
unchanged, if the 6 closest encounters are excluded, except for a small improvement 
equal to, or less than, 0.5σ, vertically. 
Table 3 lists analytical values of the linear tune shifts, chromaticities, coupling and 
chromatic coupling induced by all long-range collisions for bunch A1 at injection. The 
numbers are moderate, except perhaps the 1 unit in chromatic coupling that might be 
difficult to correct.  



 
Figure 5: Slope of increase in horizontal (left) and vertical action variance (right) with 
time in units of the square of the nominal beam emittance per turn as a function of 
horizontal or vertical start amplitude in units of σ (the start amplitudes in the two planes 
are chosen equal), for bunch A1 at injection when all long-range collisions are present. 
 

 
Figure 6: Slope of increase in horizontal (left) and vertical action variance (right) with 
time in units of the square of the nominal beam emittance per turn as a function of 
horizontal or vertical start amplitude in units of σ (the start amplitudes in the two planes 
are chosen equal), for bunch A1 at injection when the 6 closest long-range collisions are 
removed. 
 
Table 3: Total tune shifts, chromaticities, coupling driving terms, and chromatic 
couplings induced by long-range collisions for  pbar bunch A1 at injection. 

Pbar bunch A1 
X Tune shift ∆Qx -0.00015 
Y Tune shift ∆Qy 0.0014 
X Chromaticity Q’x 0.28 
Y Chromaticity   Q’y 0.56 
Coupling real part Re[κ] 0.0029 
Coupling imaginary part Im[κ] -0.0014 
Chromatic coupling Re[dκ/dδ] -1.33 
Chromatic coupling Im[dκ/dδ] -0.027 

 
 



We next explore the effect of the 4-wire compensation previously determined by B. 
Erdelyi and T. Sen. The wires and their parameters, as optimized by B. Erdelyi [4], are 
listed in Table 4. Figure 7 compares A1 tune footprints for the nominal situation with the 
case where the 4 wires are active. The wires seem to ‘rotate’ the footprint by about 90 
degrees in phase space, without much effect on its overall extent.   
 
Table 4: Parameters of 4 wires used for compensation at injection. The distance refers to 
the transverse position of the wire with respect to the pbar helical orbit. 
Wire position index X distance  Y distance Current Length 
WA 825.557 10 9.981 -0.613 50 A 1 m 
WF 2091.93 26 8.376 -5.463 232 A 1 m 
WE 3126.49 40 14.935 10.046 -25 A 1 m 
WC 5231.48 65 9.071 -9.071 75 A 1 m 
 
 

 
Figure 7: Tune footprints up to 7σ with all long-range collisions (left) and when the 4 
wires are added (right). 
 
Figure 8 presents diffusion rates for the case with all long-range encounters and the 
additional 4 wires for bunch A1. The left pictures refer again to the horizontal diffusion, 
the right ones to diffusion in the vertical plane. Only the scale of the horizontal axes is 
different for the top and bottom pictures. The dynamic aperture is again found at 6σ 
horizontally, but it now is 6σ as well in the vertical plane. Hence the wires improve the 
overall dynamic aperture (the minimum over the two planes) by about 1.0-1.5σ. This is a 
better performance than obtained by removing the 6 innermost encounters! 



 

 
Figure 8: Slope of increase in horizontal (left) and vertical action variance (right) in time 
in units of the square of the nominal beam emittance per turn as a function of horizontal 
or vertical start amplitude in units of σ (the start amplitudes in the two planes are chosen 
equal), for bunch A1 at injection when the 4 wires are added. The top and bottom pictures 
differ in the horizontal scale. 
 

Collision 
We next look at collision, starting with bunch number A6 in collision, which is a typical 
bunch. Parameters in collision are listed in Table 5. The total 1-turn matrix from the end 
of the head-on collision in B0 once around the ring, without beam-beam effects, is 
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Figure 9 shows the local beam sizes and beam-beam separations at all collision points for 
bunches A1, A6, and A12. 
 
 
 
 



 
 
Table 5: Beam parameters in collision. 
parameter Value 
proton bunch intensity 2.7e11 
95% emittance  20pi 
pbar tunes  20.583, 20.575 
circumference 6283.187 m 
energy 980 GeV 
 

 

 

 
Figure 9: Rms proton beam sizes and beam-beam offsets at all 72 collision points for 
bunches A1, A6 and A12.   
 
Figure 10 shows the mapping of all long-range encounters into the normalized phase 
space at the starting point (B0). It is surprising that the planes with a double-helix and 
with a single helix are interchanged compared with the case at injection (compare the two 
top pictures with Fig. 1). The amplitude of the helix is about 10σ, which is roughly 
2σ larger than at injection. Note that dispersive contributions are not considered when 



mapping the phase space. So the actual horizontal beam sizes at a particular long-range 
collision point may be larger than those used as normalizing unit here. The closest 
encounters are further and more distinctly separated from the rest than at injection. Only 
three collisions are found below 7σ. They are listed in Table 6. 
 
Table 6: Closest long-range encounters (below 7σ) for bunch A6 in collision. 
LR encounter no. Normalized total distance [σ] 
1 6.07 
47 6.33 
48 5.95 
 

 

 

 
Figure 10: Long-range collisions mapped into normalized phase space at starting point 
(top row), the normalized horizontal and vertical distance to the other beam at each LR 
collision point (center row), the two transverse distances plotted against each other 
(bottom left), and the total distance as a function of encounter number (bottom right). 



 
Figure 11 demonstrates that the closest 3 encounters dominate the 6σ tune footprint (left); 
the others contribute a negligible spread (right picture). Figure 12 shows tune footprints 
with all long-range encounters for three bunches in the train: A1, A6 and A12, without 
and with the two head-on collisions included. The footprints from the long-range 
collisions alone significantly differ between bunches. The difference is less visible, if the 
head-on collisions are included. 
 

 
Figure 11: Tune footprint for start amplitudes up to 6σ in each plane with all LR 
encounters present (left) and without the 3 closest (right) for A6 in collision. Head-on 
collisions are not included. 

 
Figure 12: Tune footprints in collision for bunches A1, A6 and A12 with all long-range 
but no head-on collisions (left) and with long-range plus head-on collisions (right). 
 
Figures 13 and 14 show the transverse diffusion as a function of start amplitude obtained 
when either all long-range collisions are included, or when the three closest (the only 
three at distances below 7σ) are removed. The dynamic aperture with all long-range 
collisions is about 8σ in both planes (Fig. 13). It increases by about 0.7σ, or 10%, when 
the 3 closest collisions are removed (Fig. 14). However, if we conversely remove all the 
other collisions and only keep the 3 closest, the dynamic aperture increases by 1.4σ or 
about 20%, and, in addition, the maximum diffusion speed is much smaller. This is 
illustrated in Fig. 15. Therefore, the combined effect of all the collisions that are further 
away on the dynamic aperture is stronger  than that of the 3 closest. But removing either 
part improves the dynamic aperture. 



 

 
Figure 13: Slope of increase in horizontal (left) and vertical action variance (right) with 
time in units of the square of the nominal beam emittance per turn as a function of 
horizontal or vertical start amplitude in units of σ (the start amplitudes in the two planes 
are chosen equal), for bunch A6 in collision with all long-range collisions. 

 
Figure 14: Slope of increase in horizontal (left) and vertical action variance (right) with 
time in units of the square of the nominal beam emittance per turn as a function of 
horizontal or vertical start amplitude in units of σ (the start amplitudes in the two planes 
are chosen equal), for bunch A6 in collision without the 3 closest long-range encounters. 

 
Figure 15: Slope of increase in horizontal (left) and vertical action variance (right) with 
time in units of the square of the nominal beam emittance per turn as a function of 
horizontal or vertical start amplitude in units of σ (the start amplitudes in the two planes 
are chosen equal), for bunch A6 in collision with only the 3 closest and without the 67 
other long-range encounters. 



 
Figures 16 and 17 show the diffusion rates computed for bunches A1 and A12 with all 
long-range collisions included, again without head-on collisions. In both cases the 
dynamic aperture is much smaller than for bunch A6: bunch A1 has a dynamic aperture 
of about 6σ and bunch A12 of only 5σ, compared with 8σ for A6. 
 

 
Figure 16:  Slope of increase in horizontal (left) and vertical action variance (right) with 
time in units of the square of the nominal beam emittance per turn as a function of 
horizontal or vertical start amplitude in units of σ (the start amplitudes in the two planes 
are chosen equal), for bunch A1 in collision with all long-range encounters. 

 
Figure 17:  Slope of increase in horizontal (left) and vertical action variance (right) with 
time in units of the square of the nominal beam emittance per turn as a function of 
horizontal or vertical start amplitude in units of σ (the start amplitudes in the two planes 
are chosen equal), for bunch A12 in collision with all long-range encounters. 
 
We now study how much the dynamic aperture changes when the head-on collisions are 
also included and whether the relative aperture for bunches A1, A6, and A12 would be 
modified in this case. This is motivated by the notion that our result without head-on 
collisions possibly is not in accordance with the observed ‘scallops’ [5] (though this is 
not entirely clear, as bunches with a larger dynamic aperture have more ‘space to blow 
up’). Figures 18 to 20 present the results for the same three bunches. The diffusive 
aperture for A1 drops by a remarkable 2σ, due to the addition of the head-on collisions, 
while those of bunch A6 and A12 decrease little or stay about constant. Hence, the 
general trend that the center bunches have the largest dynamic aperture remains even in 
the presence of the head-on collisions. It  actually seems to become more pronounced.  



 

 
Figure 18:  Slope of increase in horizontal (left) and vertical action variance (right) with 
time in units of the square of the nominal beam emittance per turn as a function of 
horizontal or vertical start amplitude in units of σ (the start amplitudes in the two planes 
are chosen equal), for bunch A6 in collision with long-range and two head-on encounters. 

 
Figure 19:  Slope of increase in horizontal (left) and vertical action variance (right) with 
time in units of the square of the nominal beam emittance per turn as a function of 
horizontal or vertical start amplitude in units of σ (the start amplitudes in the two planes 
are chosen equal), for bunch A1 in collision with long-range and two head-on encounters. 

 
Figure 20:  Slope of increase in horizontal (left) and vertical action variance (right) with 
time in units of the square of the nominal beam emittance per turn as a function of 
horizontal or vertical start amplitude in units of σ (the start amplitudes in the two planes 
are chosen equal), for A12 in collision with long-range and two head-on encounters. 
  



Figures 21-26 depict analytical computations, using the formulae of the appendix, for the 
build-up of tune shifts, chromaticities, coupling, and chromatic coupling around the ring. 
As usual we compare the three bunches A1, A6 and A12. There are large step-like 
increases in the vicinity of the two main collision points, and the differences between  
bunches are significant. Large values are in particular experienced, in some cases, for 
chromaticity and chromatic coupling. The total effects, accumulated over one turn, are 
compiled in Table 7. This table confirms the impression that the total tune shifts, 
chromaticities and chromatic couplings substantially vary from bunch to bunch. To give 
examples of the most striking dependencies: the induced horizontal chromaticity for 
bunch A6 is close to 17 units, the vertical for bunch A1 is -7 units, and the real and 
imaginary part of the chromatic coupling for the latter is about -3 and +4 units. 
 

 
Figure 21: Accumulated horizontal and vertical tune shifts (left) and chromaticities 
(right) as a function of long-range collision index for bunch A6 in collision. 
 

 
Figure 22: Accumulated horizontal and vertical tune shifts (left) and chromaticities 
(right) as a function of long-range collision index for bunch A12 in collision. 
 



 
Figure 23: Accumulated horizontal and vertical tune shifts (left) and chromaticities 
(right) as a function of long-range collision index for bunch A1 in collision 
 

 
Figure 24: Accumulated real and imaginary coupling components (left) and the chromatic 
coupling (right) as a function of long-range collision index for bunch A6 in collision. 
 

 
Figure 25: Accumulated real and imaginary coupling components (left) and the chromatic 
coupling (right) as a function of long-range collision index for bunch A12 in collision. 
 



 
Figure 26: Accumulated real and imaginary coupling components (left) and the chromatic 
coupling (right) as a function of long-range collision index for bunch A1 in collision. 
 
Table 7: Total tune shifts, chromaticities, coupling driving terms, and chromatic 
couplings induced by long-range collisions for various pbar bunches in collision. 
Pbar bunch A12 A6 A1 
X Tune shift ∆Qx -0.00056 0.0065 0.0073 
Y Tune shift ∆Qy 0.0068 0.0045 -0.0006 
X Chromaticity Q’x 1.54 17.52 7.50 
Y Chromaticity   Q’y -6.69 0.042 -2.01 
Coupling real part Re[κ] 0.00068 0.00075 -0.00010 
Coupling imaginary part Im[κ] 0.00019 -0.00017 0.00043 
Chromatic coupling Re[dκ/dδ] -2.64 0.32 -0.84 
Chromatic coupling Im[dκ/dδ] 4.11 -0.33 0.21 
 
In view of the large values for the chromatic functions, momentum dependence was 
introduced in the simulation. We can then compute tune footprints time for different 
constant momentum offsets, also including a nonzero value for the lattice chromaticity 
(which is modeled by an additional rotation matrix applied once per turn). Figure 27 
demonstrates how the momentum dependence widens the footprint. 
 

 
Figure 27: Tune footprints in collision for bunch A6 with all long-range and head-on 
collisions and three different constant momentum deviations δ=-σδ, 0 ,+σδ, for Q’x,y=4 
(left)  and Q’x,y=10 (right). 



 
Figures 28 and 29 show diffusion rates computed for A6 with a constant momentum 
offset equal to δσ± , and including 10 units of lattice chromaticity. The dynamic aperture 

decreases by about 1σ with respect to the on-momentum case, to 6.3-7.0σ. 
 

 
Figure 28:  Slope of increase in horizontal (left) and vertical action variance (right) with 
time in units of the square of the nominal beam emittance per turn as a function of 
horizontal or vertical start amplitude in units of σ (the start amplitudes in the two planes 
are chosen equal), for bunch A6 in collision with long-range and two head-on encounters, 
with a chromaticity Q’x,y=10 and δ=+σδ. 
 

 
Figure 29:  Slope of increase in horizontal (left) and vertical action variance (right) with 
time in units of the square of the nominal beam emittance per turn as a function of 
horizontal or vertical start amplitude in units of σ (the start amplitudes in the two planes 
are chosen equal), for bunch A6 in collision with long-range and two head-on encounters, 
with a chromaticity Q’x,y=10 and δ=-σδ. 
 

Conclusions 
Weak-strong beam-beam simulations with various numbers of long-range encounters 
were performed for antiproton bunch A1 at injection (cogging ‘0’ stat) and for A1, A6 
and A12 at top energy. For injection, the effect of 4 wires with parameters previously 
computed by B. Erdelyi was also investigated, in the presence of long-range collisions 
only (Erdelyi’s study also included lattice errors). For these studies the code WSDIFF 



was significantly modified so as to model an arbitrary number of different long-range 
collisions with varying beam sizes and transverse distances in two transverse dimensions 
plus several wires, where all nonlinear elements are connected by the linear transport-
matrices read from the up-to-date optics. The extended WSDIFF code also includes 
momentum offsets the dispersion at the long-range encounters, and a nonzero 
chromaticity. WSDIFF was benchmarked against the FNAL code BBSIM; similar tune 
footprints were obtained by both programs. Most of the simulations were performed for 
an on-energy particle in 4D. Only a few preliminary results illustrate the dependence on 
momentum. Mapping the position of the long-range encounters to the same location in 
normalized phase space reveals a peculiar helix and double-helix structure for the two 
planes. The plane of the double helix changes from the vertical to the horizontal direction 
in going from injection to top energy. There is a preferred orientation of the long-range 
encounters, which may suggest that the compensating wires should be placed with 
roughly the same orientation.   
A main finding of the simulation is that the solution of 4 wires at injection, previously 
determined by B. Erdelyi, indeed raises the dynamic aperture seen in the vertical 
diffusion, namely from about 4.5σ to 6σ, by about 1.5σ (the dynamic aperture inferred 
from the horizontal diffusion stays constant at about 6σ). Eliminating the 6 closest long-
range encounters at injection has a smaller effect on the aperture.  
At top energy, three collisions are much closer than the rest, for a typical bunch in the 
train (A6). Removing these three collisions increases the dynamic aperture for A6 from 
8σ to 8.7σ. But removing instead the 67 other collisions, increases the aperture from 
8σ to 9.4σ, which shows that the many other collisions are important, despite of being 
about 2σ further away and despite of the fact that the 3 closest completely dominate the 
tune footprint up to 6σ. Hence, as previously noted by T. Sen and others, there is little 
correlation between tune footprint and dynamic aperture.  
With all long-range encounters present, the dynamic aperture is 8σ for bunch A6, 6σ for 
A1 and only 5σ for A12. This great variation suggests that it may be difficult to find a 
wire setting that is beneficial for all bunches. Nonetheless since bunches A2 to A11 
occupy approximately the same region in tune space, it may be possible to compensate 
these ten bunches, though not the two outliers A1 and A12. The pattern of different 
dynamic apertures for bunches A1, A6 and A12 stays intact when the head-on collisions 
are included; it even gets slightly more pronounced. This simulation result that A1 and 
A12 have a smaller diffusive aperture than A6, when all long-range and head-on 
collisions are included, is probably in contradiction with the "scallops" that are observed 
during Tevatron operation. The smaller dynamic aperture of A1 and A12 could explain 
these scallops, if it led to a shaving of A1 and A12 and, thereby, bounded their emittance. 
This scenario would also imply that A1 and A12 suffer a larger intensity loss than the 
other bunches, when the scallops appear, which, likely, is not the case. The majority of 
the stores do not develop scallops, however. For these typical cases we might expect to 
see larger losses in A1 and A12, if the dynamic aperture of these bunches is reduced in 
accordance with the simulation.  The dynamic losses caused by the long-range collisions 
could be inferred from the bunch-current evolution after subtracting contributions from 
other sources, e.g., luminosity, which are independent of the dynamic aperture.  
Finally, analytical calculations show that at collision energy the differences in tune shifts 
due to the different long-range encounters are of the order 0.007 in both planes, the 



differences in horizontal chromaticity 16 units horizontally and 7 units vertically, in 
coupling about 0.0004-0.0006, and in chromatic coupling about 3-5 units. This indicates 
that, in particular, the chromatic effects will be different from bunch to bunch. For this 
reason, the momentum dependence was included in the code. We find that at an offset of 
1σδ the diffusive aperture is reduced by about 1σ from the on-momentum case.  
Table 8 presents a summary of the dynamic apertures simulated under various conditions. 
 
Table 8: Dynamic aperture in units of σ found for various cases by simulation. 
case bunch condition horizontal vertical 
injection A1 all long-range 6.0 4.5 
  w/o 6 closest 6.0 5.0 
  all long-range & 4 wires 6.0 6.0 
collision A6 all long-range 8.0 8.0 
  w/o 3 closest 8.7 8.7 
  w/o 67 others 9.4 9.4 
  all long-range plus head on 7.4 7.4 
  all long-range plus head on,  Q’x,y=10, δ=σδ  6.3 6.3 
  all long-range plus head on, Q’x,y=10, δ=−σδ 6.3 7.0 
 A1 all long-range 6.0 6.0 
  all long-range plus head-on 4.0 4.0 
 A12 all long-range 5.0 5.0 
  all long-range plus head-on 4.5 5.0 
 
The appendix compiles analytical expressions for various quantities. An analytical 
solution for the diffusion coefficient in 4D has so far eluded the capabilities of 
Mathematica.  
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Appendix: Analytical Expressions 

Tune Shift and Coupling 
The horizontal and vertical deflections of a single particle at a parasitic collision point are 
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where dx and dy denote the transverse position of the center of the other beam, and 
./2 γpbrNC ≡ Differentiating these expressions and evaluating them at zero yields the 

terms responsible for a linear tune shift and linear coupling: 
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We can identify the integrated quadrupole and skew quadrupole strengths as  
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From this, the total coupling driving terms is obtained by summing over all collisions 
with the appropriate beta-function and phase weights: 
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and in first order and linear approximation the tune shift is  
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where Kn;y=-Kn;x. 

Chromaticity and Skew Chromaticity 
Let us now also introduce dispersion at the long-range collision points. The deflection 
experienced by a particle becomes 
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As before differentiating with respect to the transverse coordinates gives quadrupole and 
skew-quadrupole components, which now, via the dispersion (ans also via the natural 
chromaticity due to the momentum-dependence of γ), depend on the momentum 
deviation. 
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The first order chromaticity is  
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Diffusion Coefficient 
The change in action due to the long-range beam-beam kick is  

,’cos2’’’)’(’’’ 2 xJxxxxxxxxxJ xxxxxxxx ∆=∆+∆≈∆+∆+∆=∆ φββαββα and an 

analogous expression holds for the vertical plane. 
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Introducing the abbreviations 
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this can be rewritten as  
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Similarly we have for the vertical plane 
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Assuming complete phase randomization, in the chaotic sea outside of the dynamic 
aperture the diffusion coefficient can be estimated as 
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